Regulus Resources Inc. announced the results from six additional drill holes at the Company’s AntaKori copper gold-silver project in northern Peru. The drilling campaign is underway in collaboration with Compañía Minera Coimolache S.A. (“Coimolache” or “CMC”), the operator of the Tantahuatay gold mine immediately to the south of the AntaKori project. Holes reported are AK-18-022 through AK-18-027. Results are only reported herein for the portions of the drill holes that occur within Regulus concessions. All of the holes encountered significant mineralization with the most notable results from hole AK-18-026 along the northern margin of drilling completed to date. The AntaKori system hosts two principal styles of copper-gold-silver sulphide mineralization: 1) mineralized skarn and breccias (Cu-Au-Ag) within Cretaceous calcareous sedimentary rocks, likely associated with as-yet undiscovered porphyry mineralization; and 2) younger, epithermal high-sulphidation (HS) mineralization (Cu-Au-Ag-As) in overlying Miocene volcanic rocks and breccias that host the adjacent Tantahuatay heap-leach gold mine to the south. The younger high-sulphidation mineralization is characterized by pyrite-enargite and locally overprints the earlier skarn mineralization (pyrite-chalcopyrite-magnetite), particularly along the southern part of the AntaKori system. Drill holes at AntaKori typically encounter the overlying Miocene volcanic rocks and high-sulphidation style mineralization prior to entering the Cretaceous sedimentary sequence and skarn at depth. As the drilling progresses to the north, the volcanic rocks terminate, and drill holes will commence directly in the skarn porphyry environment within the Cretaceous sedimentary sequence. AK-18-022 through AK-18-027 were collared to test Regulus mineral concessions, within or near to the footprint of the currently reported AntaKori NI 43-101 inferred mineral resource of 294.8 million tonnes with 0.48% Cu, 0.36 g/t Au and 10.2 g/t Ag to confirm and extend the known, but only partially delineated resource. Drill Holes AK-18-027 and AK-18-024 were drilled from the same platform but in opposite directions on section line 1050NW. Both holes tested an upper zone of Miocene volcanic rocks with associated high-supphidation epithermal mineraliztion before entering into skarn mineralization at depths of 260-300m. The holes terminated in quartzite which is normally a poor host at AntaKori but in hole AK-18-024 the quartzite is brecciated and locally well-mineralized. Drill holes AK-18-026, AK-18-025, and AK-18-023 were all drilled from the same platform. These holes complete a fan of holes on section 950NW and represent the northernmost drilling completed to date in this drill program. The holes encountered a thin zone of Miocene volcanic rocks to depths of 140-170 m prior to entering into skarn mineralization within the underlying Cretaceous sedimentary sequence. Hole AK-18-023 failed to reach target depth but hole AK-18-026 was completed to target depth and extended deeper when a well mineralized breccia body was encountered. The breccia is developed in Farrat Formation quartzite and is cemented by pyrite-chalcopyrite-bornite-chalcocite with minor late infilling of enargite-tennantite. This is the most significant occurrence of bornite encountered at AntaKori to date. The geometry of the breccias body is very poorly constrained at this time as this is the only hole in which it has been intersected. The breccia varies in degree of development with blocks of less brecciated quartzite preserved within the overall body. The well brecciated portions of the body show long runs with copper mineralization consistently in the 1-4% range. The late infilling of enargite-tennantite mineralization results in moderate levels of arsenic that are less that what occurs in the high-sulphidation mineralization within the overlying Miocene volcanic sequence but higher than skarn mineralization in the Cretaceous carbonate rocks.