Lake Winn Resources Corp. provided an update on recent activities related to its Little Nahanni Lithium Project located in western Northwest Territories (NWT). The Project is 100% owned and covers 7,080 hectares of prospective ground.

The Little Nahanni Lithium Project was modelled by Archer, Cathro & Associates (1981) Limited at the request of Lake Winn to better define the pegmatite swarms in 3D and to assist in future exploration efforts on the Project. Data to date is insufficient to model for any purpose other than highlighting future exploration targets and trends. The prospect comprises a series of dyke swarms which strike over 7,000 m along the extent of the claim group.

Swarms range from 50 m to 250 m in width, with individual dykes typically 1-10 m wide. The dyke swarms dip steeply to the north-east and have been demonstrated in outcrop and drilling to have a vertical extent of 300 m or more. Modelling was performed in Seequent Leapfrog Geo using surface mapping points and interpretations derived from previous exploration campaigns.

Drill data, where possible, was incorporated in order to refine models and or add potential targets for further evaluation. Over 600 historical surface mapping points were used across the region to define the dyke swarms as well as model individual dykes. Classification and naming conventions were retained.

Where local fault offsets were inferred from previous assessments, these were honored as much as possible.ip orientations were derived from surface mapping and projected to depth. The dykes remain open to depth and the full vertical extent of the dykes is unknown. They are modelled to an arbitrary depth, but this is not based on any current data apart from surface projections.

Surface structural readings from mapping were used to generate individual dyke wireframes. These are 2D planes with arbitrary strike length and vertical extents and are primarily made to visually highlight dyke density and project strike extensions into data-sparse areas. Numerous lithology readings used to generate the dyke swarms have been collected across the property and can be further incorporated to define the dykes in greater resolution.

Surface data points for modelling are confined to ridges and other topographical highs which results in gaps of 500 m or more across cirques. Although continuity can be readily inferred where data points are dense, it is apparent that dyke complexity is high on a local scale and can affect volume estimates. Modelled dykes in these areas have inferred widths and orientations.